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Summary. Fukutome's group theoretical classification scheme for determinants, 
based on the transformation properties of the Fock-Dirac density matrix under 
spin rotations and time reversal, has been extended to momentum space. 
Particular attention is paid to the transformation properties of orbitals and 
density matrices under inversion in momentum space. 
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I. Introduction 

L6wdin's three papers from 1955 entitled Quantum Theory of Many-Particle 
Systems [ 1] certainly constitute a landmark. A number of fundamental concepts 
and their connections were clearly exposed and analyzed. New and fertile notions 
were introduced. A common theme in these papers are wave functions built up 
from determinants. Configuration interaction (CI) was analyzed in the first paper 
and the concept of natural spin orbitals was introduced as the set maximizing the 
rate of convergence of the CI expansion. As we know now [2] there is an 
intimate connection between the orthonormal natural spin orbitals and the 
linearly dependent generalized overlap amplitudes. 

In the present paper we want to dwell particularly on those parts of the 1955 
papers which deal with single determinants. In the second paper the reduced 
density matrices which had been introduced in the first one, were specialized to 
the case when the total wave function is approximated by a single determinant. 
The central role played in this connection by the Fock-Dirac density matrix - 
very aptly called the fundamental &variant - w a s  thoroughly investigated. An 
important aspect throughout the paper is the insistence on general spin orbitals 
O(x) with x = (r, ~), thus without any specification of their spin components. The 
Hartree-Fock equations derived there are completely general. 

In view of all the extra letters which have been added to the abbreviation 
"HF"  over the years this is an important aspect to notice. For a majority of 
quantum chemists "Hartree-Fock" means, if we deal with closed shells, that 
each orbital is doubly filled and that the number of orbitals thus is equal to half 
the number of electrons. In the third 55 paper L6wdin went considerably beyond 
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this type of restricted Hartree-Fock by introducing what he then called Ex- 
tended Hartree-Fock, later changed to Projected Hartree-Fock. 

Since the end of the sixties Fukutome and collaborators [3] have made very 
interesting contributions to this field, which extend L6wdin's work in an impor- 
tant way. By exploiting the fact that for a set of equations like HF also the 
symmetry must be self-consistent, Fukutome has introduced a classification 
scheme for single determinants, or equivalently for Fock-Dirac density matrices. 
This leads to eight classes with Fock-Dirac matrices differing with respect to 
reality and spin structure. The ordinary Hartree-Fock determinant with doubly 
filled orbitals corresponds to one of these eight classes. 

Since the beginning of quantum mechanics it has been clear that momentum 
space and position space are equivalent in the sense that the information content 
is the same whether one works with wave functions of r or of p. This is not just 
a theoretical subtlety. There are a number of experiments which give direct 
information about momentum space, Compton scattering [4] and electron mo- 
mentum spectroscopy [5] being perhaps the most important ones. The so-called 
Sagamore Conferences reflect the interest in both charge density and momentum 
distributions [6]. 

In the present paper we investigate what the Fukutome classification means 
in momentum space. It is always instructive to find the momentum space 
counterparts of various position space concepts and quantities. Fukutome's 
classification carries implications for both density matrix components and the 
type of spin orbitals which are possible. 

As a starting point we review in Sect. 2 the connection between reduced first 
order density matrices in position and momentum space, and recall some of their 
properties which will be used in later sections. In Sect. 3 we discuss inversion 
symmetry in momentum space and its relation to time reversal which plays an 
important part in Fukutome's classification. In Sect. 4 we give some more details 
about the Fukutome classes in position space, in particular the properties of the 
components of the Fock-Dirac matrix. The heart of the paper contained in Sect. 
5, where we derive the properties of the Fock-Dirac density matrix in the eight 
Fukutome classes and discuss the implications for the spin orbitals which make 
up these matrices. 

2. First order density matrices in position and momentum space 

With the normalization proposed by L6wdin [1] the general definition of the 
reduced first order density matrix for a state of an N-electron system character- 
ized by a total wave function ~(Xl, x2 . . . .  xu) is: 

f • " " X N  1, X2 . . . .  X N  " 2 ( x l l x ~ ) = U  T(xa,x2, )T*(x' )dx2. dxu. ( 1 ) 

If the total wave function is approximated by a single determinant built up of 
orthonormal spin orbitals Ok(X), with x as usual denoting the combined coordi- 
nate x = (r, 0 with three spatial and one spin component, (1) reduces to the 
so-called Fock-Dirac density matrix [1]: 

N 

7(xl I x~) = ~ Ok(Xl)O*(X'~). (2) 
k = l  
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We are primarily interested here in the orbital part Q of 7, which can be obtained 
as follows: 

?(c)] 
7(x  Ix') = 7(, ,  ¢ I t ' ,  ¢') = [a(¢)fl(¢)]Q(r, r') L~(~')J (3) 

The 2 x 2 matrix Q can be written in terms of the number density matrix N(r, r ') 
and the components of the spin density matrix vector S(r, r'), [3, 7]: 

1 / t t ' ~  • / = [gN(r, r ) + Sz(r, r ) Sx(r, r ~ --,Sy(r, r )]  
Q = Q(r, r ') L<( r ,  r ') + iS,(r, r ') ½N(r, r ) - S:(r, r ' )  _[" (4) 

The charge density is obtained by integrating Eq. (3) over spin and setting r '  = r: 

0(r) = .Id~ 7(r, ~ I ~). (5) r ,  

Comparing Eqs. (3) and (4) we see that the charge density can also be written as 
the diagonal element of the number density matrix: 

0(r) = Tr Q(r, r) = N(r, r). (6) 

Each one of the four components of Q(r, r'), i.e. N(r, r'), Sx(r, r'), Sy(r, r'), and 
Sz(r, r') has its counterpart in momentum space, according to the following 
formula [ 8]: 

q(p,p')=~---~-ifdrdr'q(r,r ')e - i ° ' "  """) (7) 

We use italics to denote functions in momentum space: f(r)  ~ f ( p ) .  
All these components in both spaces satisfy the relations: 

q*(r, r') = q(r', r); (8a) 

q*(p, p') = q(p', p). (8b) 

3. Inversion symmetry in momentum space 

An important difference between position and momentum space shows up in the 
role played by inversion symmetry in the two spaces. In momentum space the 
operation of inversion [p ~ - p ]  is intimately connected with time reversal 
[t ~ -  t], in the sense that time reversal implies inversion of momentum. Time 
reversal is one of the basic symmetry operations used by Fukutome to achieve 
his classification, and it is therefore natural that a study of the Fukutome classes 
in momentum space requires some comments about inversion symmetry. 

Kaijser and Smith [9] have discussed some related questions. They pointed 
out that in the Born-Oppenheimer approximation the momentum distribution 
must be even: 6 ( - P )  --0(P) since the total electronic system must be at rest: 

fv~(~) dv = o. (9) 

L6wdin [10] has shown that this is satisfied if q~) is obtained from real wave 
functions. The question whether the components of the Fock-Dirac  density 
matrix are real, purely imaginary or complex play a fundamental role in 
Fukutome's discussion, which therefore forms a natural extension of the works 
just quoted. 
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We first notice that the basic Fourier transforms connecting a function go(r) 
in position space with its counterpart go(p) in momentum space, go(r) ~ go(p): 

go(p) - dr go(r) e - iv . r ;  ( l Oa) 
oO 

go(r) - dr go(p) e i v ' ,  (10b) 
oO 

imply the following connections between properties in momentum and position 
space: 

go*(r) ~-* go*(--p); ( l l a )  

g o ( r )  *-~ go(--p); ( l lb)  

go*(-r)  ~-* go*(p). ( l lc )  

We separate the real and imaginary parts of a typical component q(r, r ' )  of the 
Fock-Dirac  density matrix in position space [cf (4) and (7)]: 

q(r, r ' )  = ql(r,  r ' )  + iq2(r, r').  (12) 

Here ql(r,  r ' )  and qz(r, r ' )  are thus real and we have: 

ql(r ' ,  r) = ql(r,  r'); (13a) 

q2(r', r) = --q2 (r, r').  (13b) 

For the real and imaginary parts of  the counterpart q(p, p ')  of q(r, r ' )  we use the 
notation: 

q(P, P ' )  = ql (P, P ' )  + iq_2(p, p ' ) .  (14) 

Explicit expressions for these quantities are obtained from (7) and (12): 

if ql(P,P') = ~ 3  dr dr'[ql(r,  r')cos(p • r - p ' -  r ')  + q2(r, r')sin(p • r - p ' .  r')]; 

(15a) 1; 
q_2(P,P') = ~ dr dr'[q2(r, r')cos(p • r - p '  . r ' )  - ql(r,  r')sin(p • r - p '  . r')]. 

(15b) 

Combining Eqs. (13) with (15) we see that: 

_q2(P, P ') = - _q2(P', P), (16) 

which implies that: 

_q2 (P, P) = O. (17) 

The fundamental condition of Eq. (9) can therefore be written: 

f f 1 f f 
p Q ( p ) d p =  p q j ( p , p ) d p = ~ 5 ~ 3  d r d r ' q a ( r , r "  ) d p p s i n p . ( r - r ' ) = O ,  (18) 

which shows that it is satisfied for all real Fock-Dirac  density matrices. 
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4. The Fukutome classes 

Fukutome's classification originates from a study of the transformation proper- 
ties of the components of the Fock-Dirac  density matrix under spin rotations 
and time reversal [3, 11]. In the basis of spin functions [~, r] a spin rotation by 
the angle '9 around an axis characterized by the unit vector e is represented by 
the 2 x 2 matrix: 

'9 '9 
u(e, '9) = 1 . c o s ~  + i(a • e)sin ~ .  (19) 

Here a is the vector whose components are the three Pauli matrices. Combining 
Eq. (19) with the expression of Eq. (4) for the orbital part of the Fock-Dirac  
density matrix we get: 

u(e, '9)Qu+(e, '9) = gN + t r l  • (SN). (20) 

is the 3 x 3 orthogonal matrix defined by: 
3 

u(e, '9)6iu+(e, ,9) = Z ~ijaj' (21)  
j=l  

which connects the two-dimensional spin rotation u with the rotation of the 
three-dimensional spin density matrix vector S. Denoting the spin rotated 
number and spin density matrices N u and S u, respectively, we thus have: 

N u = N; (22a) 

S" = S~.  (22b) 

Time reversal in the spin function basis is represented by the operator: 

0 = -icr2K, (23) 

involving the second Pauli matrix and the operation of complex conjugation K. 
For the orbital part of the Fock-Dirac  density matrix we then get the following 
transformation under time reversal: 

O Q O  + = 1N* + a .  ( - S * ) .  (24) 

This implies that the time reversed number and spin density matrices are: 

N'  = N*. (25a) 

S'  = - S * .  (25b) 

The Eqs. (22) and (25) imply that in general the elements of the group G 
consisting of time reversal and all spin rotations do not commute with the effective 
H a r t r e e - F o c k  one electron operator associated with the F o c k - D i r a c  density 
matrix Q. Some of the elements of G may however commute with the HF  
operator. In such a case those elements form a subgroup of (3, which character- 
izes the solutions of that equation: the corresponding Fock-Dirac  matrix is then 
invariant under the elements of the subgroup. 

The Fukutome classes correspond to the subgroups of G. Each class entails 
a set of restrictions on the density matrix components and/or the possible spin 
orbitals. The "ordinary" situation with doubly filled orbitals corresponds to the 
trivial case when the subgroup is the full group G itself. Then the orbitals must 
also be real or expressed more correctly: it is then possible to transform the 
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orbitals to real ones. It is obviously possible to have doubly filled complex 
orbitals. But then we are in a different Fukutome class, the so-called Charge 
Current Waves. The other trivial case when the subgroup reduces to the identity 
operator [or to 1 and -1]  means that there are no requirements on the density 
matrix components and/or spin orbitals. Between these two extreme cases there 
are six other subgroups/classes. Using Fukutome's terms and abbreviations we 
thus have the following possibilities. 

Class Number density matrix Spin density matrix vector 

Time Invariant Closed Shell 

TICS N*(r, r') = N(r, r') 

Charge Current Waves 

CCW N*(r, r') ~ N(r, r') 

Axial Spin Current Waves 

ASCW N*(r, r') = N(r, r') 

Axial Spin Density Waves 

ASDW N*(r, r') = N(r, r') 

Axial Spin Waves 

ASW N*(r, r') ~ N(r, r') 

Torsional Spin Current Waves 

TSCW N*(r, r') = N(r, r') 

Torsional Spin Density Waves 

TSDW N*(r, r') = N(r, r') 

Torsional Spin Waves 

TSW N*(r, r') ~ N(r, rr') 

S(r, r') = 0 

S(r, r') = 0 

S(r, r') = eS(r, r') 
S*(r, r') = - S ( r ,  r') 

S(r, r') = eS(r, r') 
S*(r, r ' )  = S(r, r') 

S(r, r') = eS(r, r') 
S*(r, r') ~ i S ( r ,  r') 

S*(r, r') = -S ( r ,  r') 

s~(r , / )  = -S~(r, f )  
S . ( r ,  r') S . ( r ,  r') 

S(r, r') ~ + S(r, r') 

In the three classes beginning with A (for axial), the direction of the spin density 
matrix vector is fixed, whereas it varies with position in the "torsional" classes. 
The "parallel" and "perpendicular" subscripts for the torsional spin density 
waves refer to a fixed direction which characterizes the corresponding subgroup. 
For further details we refer to [3, 11]. 

5. The Fukutome classes in momentum space 

5.1. Density matrix components 

We first notice that Eq. (15) implies: 

q( - p ,  - p ' )  = q(p, P'), (26) 
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only i f  the corresponding density matrix component in position space is either 
real or purely imaginary. If q(r, r') is complex, Eq. (26) does not hold. On the 
other hand a component in momentum space is in general complex even if the 
corresponding component in position space is either real or purely imaginary. 

We get from Eq. (7) that in the general case a density matrix component 
q*(r, r') in position space corresponds to q ( - p ' ,  - p )  = q*( - p ,  - p ' )  in momen- 
tum space, if q(r, r') corresponds to q(p, p'). The eight Fukutome classes are thus 
characterized by the following properties of the Fock-Dirac density matrices in 
momentum space. 

TICS 

N(p, p') = N*( --p, --p'); 

N(p, p) = N( --P, --P). 

CCW 

N(p, p') ~ N*( - p ,  - p ' ) ;  

N(p, p) -J: N( -p ,  --p). 

ASCW 

N(p, p') = N*( - p ,  - p ' ) ;  

N(p, p) = N( - p ,  -p ) ;  

ASDW 

N(p, p') = N*( - p ,  - p ' ) ;  

N(p, p) = N( --p, -p ) ;  

ASW 

N(p, p') ¢: N*( - p ,  - p ' ) ;  

N(p, p) -~ N( --p, --p); 

TSCW 

N(p, p') = N*( -p ,  - p ' ) ;  

N(p, p) = N( - p ,  -p ) ;  

TSDW 

N(p, p') : N*( - p ,  - p ' ) ;  

N(p, p) = N( -p ,  -p ) ;  

TSW 

N(p, p') :~ N*( - p ,  - p ' ) ;  

N(p, p) :~ N( --p, --p); 

S(p, p')  = O. 

S(p, p')  = O. 

S(p, p') = eS(p, p') = - eS*( - p ,  - p ' )  

S(p, p) = - S( - p ,  - p ) .  

S(p, p') = eS(p, p') = eS*( - p ,  - p ' )  

S(p, p) = s(  - p ,  - p ) .  

s(p, p') = eS(p, p') :/: +_eS*( - p ,  - p ' )  

SO,, p) +~ + SO,, - p ) .  

s(p,  p ' )  = - s * ( - p ,  - p ' )  

s(p,  p) = - s (  - p ,  - p ) .  

sll~r,p') = - s ~ ( - p ,  - r ' ) ;  

s_~ fr, p ' )  = s~  ( - p ,  - p  3; 

sll (~, p) = - sil ( - p ,  - p ) ;  

s .  (~, p) = s±(  - p ,  - r ) .  

s(r,  t,') # + s* (  - p ,  - p ' )  

SO,, p) ~ + s (  - p ,  - p ) .  
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Thus in general the basic condition of Eq. (9) for a momentum distribution in 
the Born-Oppenheimer approximation is not satisfied in the classes CCSW, 
ASW and TSW. 

5.2. Spin orbitals 

In order to discuss the properties of the spin orbitals in the different classes we 
introduce a spinor notation [3, ! 1]: 

~Ok(x) = ~(()~bkl (r) + fl(()q~k2(r) = [~((), fl(0] L~bk2(r) ] = [~(0, fl(0]~bk(r) • (27) 

This allows us to study separately the orbital part ~bk(r) of the spin orbital ~k(x). 
The transformation properties of a spinor under spin rotation are obtained from 
Eq. (19): 

(oU(v)=u(e,O)f)(r)=[l'cosO+i(a'e)sin~]~(r). (28) 

Similarly Eq. (23) shows how it transforms under time reversal: 

~'(r) = O4~'(r)= - i~2K Fq~l(r)] = [ - 4~2. ( r ) - ] -  (29) 
_ 

The conditions imposed on the Fock-Dirac density matrix components in the 
various Fukutome classes restrict the possibilities for the spin orbitals which 
make up these density matrices [12, 13]. In the TSW class the orbital components 
of the various spin orbitals are arbitrary in the sense that no relation between 
them is imposed; in general they are complex. In the TSDW class the orbital 
components must be real, but are still independent of each other. In the other 
classes definite relations between the orbital components must hold which we 
show here by giving the N spinors which make up the determinant. Thus in the 
following table each column represents a spinor. 

TICS 

[ul(r) 0 u2(r) 0 " " " UN/2(r) 0 1. ui(r) real. 
0 Ul(r ) 0 U2(r) " " " 0 UN/2 (r) ' 

CCW 

Same as in TICS but with complex orbital components ui(r). 

ASCW 

[Ul0(r ) 0 U2(r ) 0 "''UN/2(r ) 0 1 
u•(r)  0 u2*(r) • . .  0 u*u/2(r) 

ASDW 

I/,/10(r) 0 U2(r ) 0 "''b/N/2(r ) O ] ; u i ( r )  andvj(v)real. 
l) 1 ( r )  0 U 2 ( r )  "" " 0 l) U/2 ( r )  

ASW 

Same as in ASDW but with complex orbital components ui(r) and vj (r). 
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TSCW 

u l ( r )  w l ( r )  u2(r )  w2(r)  • • • UN/2(r ) WN/2(r) 1 
- w * ( r )  u*(r) - w * ( r )  u*(r) . . . .  w~/2(r) u~/2(r)J" 

Then we use Eq. (11) to construct the corresponding scheme for the relations 
between the orbital components of  the spinors in momentum space. This gives: 

0 u2q,) 0 . . .uu/:q,)  0 -] 
0 u2(p) . • • 0 UN/2~17) J " 

U:0~) 0 " ' 'uN/2(~)  0 -] 

0 U*(--~)''" 0 U%(--p)J" 

u2(~) o " " uN/2(~) o ] 

0 u2(p) • • • 0 UN/2(p) ~ " 

TICS 

CCW 

Similar to TICS. 

ASCW 

u ~ ' ( - ~ )  

ASDW 

Iu,o , ° v~(~) 

ASW 

Similar to ASDW. 

TSCW 

I u ,q , )  
- w T ( - p )  

W 1 (/I) b/2 (P) W2(p) " ' "  UN/2(P) WN/2(I1) 1 
U~(--p) --W2@(--p) U~ ( - - p )  . . . .  W/~g/2 ( - - p )  U ~¢/2 ( - - p )  j " 

The orbital components in the TICS class in momentum space are complex, but 
they contain contributions only from real counterparts in position space. In 
CCW the orbital components u;(p) have contributions from both real and 
imaginary components of their position state counterparts. Similar comments 
hold for the classes ASDW and ASW. 

The question whether these orbital components in momentum space are real 
or purely imaginary is connected with the transformation properties of the 
position space counterparts under inversion. 

6. Discussion 

The acronym R HF for the approximation level corresponding to a single 
determinant with doubly filled orbitals as the total wave function is rather vague, 
since it only tells that one or more restrictions have been imposed on the spin 
orbitals. The term U H F  for Unrestricted Har t r ee -Fock  is even less precise, since 
it does not specify which restrictions have been relinquished. Usually U H F  is 
synonymous with "different orbitals for different spins", which in Fukutome's 
terminology would correspond to ASDW. Fukutome himself uses " U H F "  so to 
speak literally, i.e. for anything which is not RHF.  Even though this is defend- 
able from a strictly logical point of  view, it is a little confusing in view of 
other meaning of UHF.  The present author has therefore proposed to use 
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G H F  = General Har t r ee -Fock  when the spin orbitals are not specified. As 
shown by Fukutome that generic term then covers the eight classes, which are 
well characterized by his own terms. 

The great advantage with Fukutome's scheme is that we can specify explicitly 
the restrictions associated with each class. This also means that we can specify 
the particular restrictions that are relinquished when we go from a "smaller" to 
a "larger" class. Until now nearly all calculations at the Har t r ee -Fock  level - ab 
initio or semi-empirical - have been of RHF  or (traditional) U H F  type. There 
are good reasons to expect that interesting solutions belonging to the other 
classes will be found, not least for extended systems. Fukutome's scheme should 
then constitute a valuable road map. 

Fukutome's classification scheme is intimately connected with the concept of  
instabilities. A set of spin orbitals forming solutions of  the Har t r ee -Fock  
equations may or may not be stable under variations [14]. Both the original 
solutions and the final ones can be classified according to Fukutome's scheme. If  
the solutions are unstable with respect to variations leading to another Fuku- 
tome class, we have a mechanism for crossing borders between the Fukutome 
classes. Studies of such instabilities provide important pieces of information 
about the character of the possible solutions of the Har t r ee -Fock  equations for 
the system under study, both in position and momentum space. 

During the last decade there has been a renewed interest in momentum space 
and in calculations performed directly in momentum space [15-17]. The results 
in Sect. 5 of  the present paper should be useful also for such explicit computa- 
tions, e.g. as a means of following the character of successive iterations. 

An important aspect of  the formulation used in the present paper and in 
some of the articles referred to, is the possibility to discuss explicitly the 
properties of the spin density matrix vector. That quantity is needed for 
applications to magnetic problems. This is however a vast and to a large extent 
open field, which falls outside the scope of the present paper. 

The approximation level defined by a single determinant may not seem very 
ambitious. As shown by Fukutome and collaborators [3, 1l], however, the 
picture is much brighter if we work with a determinant without restrictions, 
which can adapt to the problem at hand. (}hrn and Deumens and their 
collaborators [18-24] have developed a time dependent formalism for electron 
nuclear dynamics (END), in other words for treating both electronic and nuclear 
motion. This is a very general scheme and the electronic wave function can be 
chosen at will. As a reasonable starting point, which has already given very 
interesting results, they have chosen to use a single determinant, but with 
completely general spin orbitals. These spin orbitals vary continuously as func- 
tions of time. Fukutome's classification, which shows the possible structure of 
the Fock-Di rac  density matrices both in position and momentum space, should 
definitely be useful here. 
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